Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 23(1): 22, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229067

RESUMO

BACKGROUND: Trichoderma reesei is an organism extensively used in the bioethanol industry, owing to its capability to produce enzymes capable of breaking down holocellulose into simple sugars. The uptake of carbohydrates generated from cellulose breakdown is crucial to induce the signaling cascade that triggers cellulase production. However, the sugar transporters involved in this process in T. reesei remain poorly identified and characterized. RESULTS: To address this gap, this study used temporal membrane proteomics analysis to identify five known and nine putative sugar transporters that may be involved in cellulose degradation by T. reesei. Docking analysis pointed out potential ligands for the putative sugar transporter Tr44175. Further functional validation of this transporter was carried out in Saccharomyces cerevisiae. The results showed that Tr44175 transports a variety of sugar molecules, including cellobiose, cellotriose, cellotetraose, and sophorose. CONCLUSION: This study has unveiled a transporter Tr44175 capable of transporting cellobiose, cellotriose, cellotetraose, and sophorose. Our study represents the first inventory of T. reesei sugar transportome once exposed to cellulose, offering promising potential targets for strain engineering in the context of bioethanol production.


Assuntos
Celulase , Glucanos , Hypocreales , Trichoderma , Celobiose/metabolismo , Proteoma/metabolismo , Proteínas de Membrana/metabolismo , Celulose/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Celulase/metabolismo , Açúcares/metabolismo , Oligossacarídeos/metabolismo , Trichoderma/metabolismo
2.
Biotechnol Lett ; 45(9): 1093-1102, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37354337

RESUMO

OBJECTIVES: The aim of the present work was to perform the co-culture between Trichoderma longibrachiatum LMBC 172, a mesophilic fungus, with Thermothelomyces thermophilus LMBC 162, a thermophilic fungus, by submerged fermentation in a bioreactor. RESULTS: There was an increase in protein production, reaching the value of 35.60 ± 3.76 µg/ml at 72 h. An increase in the amount of proteins of 27.5% in relation to the isolated cultivation of T. longibrachiatum and 19.7% in comparison when T. thermophilus was isolated and cultivated. After that, the saccharification profile of three varieties of sugarcane (sugarcane in natura, culms of sugarcane SP80-3280, and culms of Energy cane) submitted in two pretreatments (autohydrolysis and chemical) was performed. The (e) chemical pretreatment was the better in generating of fermentable sugars from sugarcane bagasse and culms of Energy cane, while with the autohydrolysis pretreatment was obtained the better values to culms of SP80-3280 sugarcane. The sugars found were glucose, xylose, arabinose, and cellobiose. CONCLUSION: These results suggest that the co-culture between these microorganisms has the potential to produce an enzymatic cocktail with high performance in the hydrolysis of materials from the sugar-alcohol industry.


Assuntos
Hypocreales , Saccharum , Celulose/química , Técnicas de Cocultura , Hypocreales/metabolismo , Glucose/metabolismo , Fermentação , Hidrólise
3.
Int J Biol Macromol ; 221: 456-471, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36070819

RESUMO

Microorganisms, such as fungi and bacteria, are crucial players in the production of enzymatic cocktails for biomass hydrolysis or the bioconversion of plant biomass into products with industrial relevance. The biotechnology industry can exploit lignocellulosic biomass for the production of high-value chemicals. The generation of biotechnological products from lignocellulosic feedstock presents several bottlenecks, including low efficiency of enzymatic hydrolysis, high cost of enzymes, and limitations on microbe metabolic performance. Genetic engineering offers a route for developing improved microbial strains for biotechnological applications in high-value product biosynthesis. Sugarcane bagasse, for example, is an agro-industrial waste that is abundantly produced in sugar and first-generation processing plants. Here, we review the potential conversion of its feedstock into relevant industrial products via microbial production and discuss the advances that have been made in improving strains for biotechnological applications.


Assuntos
Saccharum , Saccharum/química , Celulose/química , Biotecnologia , Biomassa , Hidrólise , Lignina/química
4.
Microorganisms ; 9(3)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807631

RESUMO

The lignocellulosic biomass comprises three main components: cellulose, hemicellulose, and lignin. Degradation and conversion of these three components are attractive to biotechnology. This study aimed to prospect fungal lignocellulolytic enzymes with potential industrial applications, produced through a temporal analysis using Hymenaea courbaril and Tamarindus indica seeds as carbon sources. α-L-arabinofuranosidase, acetyl xylan esterase, endo-1,5-α-L-arabinanase, ß-D-galactosidase, ß-D-glucosidase, ß-glucanase, ß-D-xylosidase, cellobiohydrolase, endoglucanase, lichenase, mannanase, polygalacturonase, endo-1,4-ß-xylanase, and xyloglucanase activities were determined. The enzymes were produced for eight filamentous fungi: Aspergillus fumigatus, Trametes hirsuta, Lasiodiplodia sp., two strains of Trichoderma longibrachiatum, Neocosmospora perseae, Fusarium sp. and Thermothelomyces thermophilus. The best producers concerning enzymatic activity were T. thermophilus and T. longibrachiatum. The optimal conditions for enzyme production were the media supplemented with tamarind seeds, under agitation, for 72 h. This analysis was essential to demonstrate that cultivation conditions, static and under agitation, exert strong influences on the production of several enzymes produced by different fungi. The kind of sugarcane, pretreatment used, microorganisms, and carbon sources proved limiting sugar profile factors.

5.
mSystems ; 4(4)2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31213522

RESUMO

Filamentous fungi are remarkable producers of enzymes dedicated to the degradation of sugar polymers found in the plant cell wall. Here, we integrated transcriptomic data to identify novel transcription factors (TFs) related to the control of gene expression of lignocellulosic hydrolases in Trichoderma reesei and Aspergillus nidulans Using various sets of differentially expressed genes, we identified some putative cis-regulatory elements that were related to known binding sites for Saccharomyces cerevisiae TFs. Comparative genomics allowed the identification of six transcriptional factors in filamentous fungi that have corresponding S. cerevisiae homologs. Additionally, a knockout strain of T. reesei lacking one of these TFs (S. cerevisiae AZF1 homolog) displayed strong reductions in the levels of expression of several cellulase-encoding genes in response to both Avicel and sugarcane bagasse, revealing a new player in the complex regulatory network operating in filamentous fungi during plant biomass degradation. Finally, RNA sequencing (RNA-seq) analysis showed the scope of the AZF1 homologue in regulating a number of processes in T. reesei, and chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) provided evidence for the direct interaction of this TF in the promoter regions of cel7a, cel45a, and swo Therefore, we identified here a novel TF which plays a positive effect in the expression of cellulase-encoding genes in T. reesei IMPORTANCE In this work, we used a systems biology approach to map new regulatory interactions in Trichoderma reesei controlling the expression of genes encoding cellulase and hemicellulase. By integrating transcriptomics related to complex biomass degradation, we were able to identify a novel transcriptional regulator which is able to activate the expression of these genes in response to two different cellulose sources. In vivo experimental validation confirmed the role of this new regulator in several other processes related to carbon source utilization and nutrient transport. Therefore, this work revealed novel forms of regulatory interaction in this model system for plant biomass deconstruction and also represented a new approach that could be easy applied to other organisms.

6.
Biotechnol Biofuels ; 12: 146, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31223336

RESUMO

BACKGROUND: Trichoderma reesei is the most important industrial producer of lignocellulolytic enzymes. These enzymes play an important role in biomass degradation leading to novel applications of this fungus in the biotechnology industry, specifically biofuel production. The secretory pathway of fungi is responsible for transporting proteins addressed to different cellular locations involving some cellular endomembrane systems. Although protein secretion is an extremely efficient process in T. reesei, the mechanisms underlying protein secretion have remained largely uncharacterized in this organism. RESULTS: Here, we report for the first time the isolation and characterization of T. reesei extracellular vesicles (EVs). Using proteomic analysis under cellulose culture condition, we have confidently identified 188 vesicular proteins belonging to different functional categories. Also, we characterized EVs production using transmission electron microscopy in combination with light scattering analysis. Biochemical assays revealed that T. reesei extracellular vesicles have an enrichment of filter paper (FPase) and ß-glucosidase activities in purified vesicles from 24, 72 and 96, and 72 and 96 h, respectively. Furthermore, our results showed that there is a slight enrichment of small RNAs inside the vesicles after 96 h and 120 h, and presence of hsp proteins inside the vesicles purified from T. reesei grown in the presence of cellulose. CONCLUSIONS: This work points to important insights into a better understanding of the cellular mechanisms underlying the regulation of cellulolytic enzyme secretion in this fungus.

7.
Int J Genomics ; 2018: 1974151, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30345291

RESUMO

The filamentous fungi Trichoderma reesei is one of the most well-studied cellulolytic microorganisms. It is the most important fungus for the industrial production of enzymes to biomass deconstruction being widely used in the biotechnology industry, mainly in the production of biofuels. Here, we performed an analytic review of the holocellulolytic system presented by T. reesei as well as the transcriptional and signaling mechanisms involved with holocellulase expression in this fungus. We also discuss new perspectives about control of secretion and cellulase expression based on RNA-seq and functional characterization data of T. reesei growth in different carbon sources, which comprise glucose, cellulose, sophorose, and sugarcane bagasse.

8.
PLoS One ; 12(1): e0169796, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28107376

RESUMO

Microorganisms play a vital role in bioethanol production whose usage as fuel energy is increasing worldwide. The filamentous fungus Neurospora crassa synthesize and secrete the major enzymes involved in plant cell wall deconstruction. The production of cellulases and hemicellulases is known to be affected by the environmental pH; however, the regulatory mechanisms of this process are still poorly understood. In this study, we investigated the role of the pH regulator PAC-3 in N. crassa during their growth on sugarcane bagasse at different pH conditions. Our data indicate that secretion of cellulolytic enzymes is reduced in the mutant Δpac-3 at alkaline pH, whereas xylanases are positively regulated by PAC-3 in acidic (pH 5.0), neutral (pH 7.0), and alkaline (pH 10.0) medium. Gene expression profiles, evaluated by real-time qPCR, revealed that genes encoding cellulases and hemicellulases are also subject to PAC-3 control. Moreover, deletion of pac-3 affects the expression of transcription factor-encoding genes. Together, the results suggest that the regulation of holocellulase genes by PAC-3 can occur as directly as in indirect manner. Our study helps improve the understanding of holocellulolytic performance in response to PAC-3 and should thereby contribute to the better use of N. crassa in the biotechnology industry.


Assuntos
Celulase/metabolismo , Celulose/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Proteínas Fúngicas/genética , Deleção de Genes , Concentração de Íons de Hidrogênio , Neurospora crassa/metabolismo , Saccharum/metabolismo , Perfilação da Expressão Gênica , Genes Fúngicos , Hidrólise , Neurospora crassa/enzimologia , Regiões Promotoras Genéticas
9.
BMC Microbiol ; 15: 195, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26424592

RESUMO

BACKGROUND: The signaling second messenger cyclic AMP (cAMP) regulates many aspects of cellular function in all organisms. Previous studies have suggested a role for cAMP in the regulation of gene expression of cellulolytic enzymes in Trichoderma reesei (anamorph of Hypocrea jecorina). METHODS: The effects of cAMP in T. reesei were analyzed through both activity and expression of cellulase, intracellular cAMP level measurement, western blotting, indirect immunofluorescence and confocal microscopy. RESULTS: To elucidate the involvement of cAMP in the cellulase expression, we analyzed the growth of the mutant strain ∆acy1 and its parental strain QM9414 in the presence of the inducers cellulose, cellobiose, lactose, or sophorose, and the repressor glucose. Our results indicated that cAMP regulates the expression of cellulase in a carbon source-dependent manner. The expression cel7a, and cel6a genes was higher in the presence of sophorose than in the presence of cellulose, lactose, cellobiose, or glucose. Moreover, intracellular levels of cAMP were up to four times higher in the presence of sophorose compared to other carbon sources. Concomitantly, our immunofluorescence microscopy and western blot data suggest that in the presence of sophorose, cAMP may regulate secretion of cellulolytic enzymes in T. reesei. CONCLUSIONS: These results allow us to better understand the role of cAMP and expand our knowledge on the signal transduction pathways involved in the regulation of cellulase expression in T. reesei. Finally, our data may help develop new strategies to improve the expression of cel7a and cel6a genes, and therefore, favor their application in several biotechnology fields.


Assuntos
Celulose 1,4-beta-Celobiosidase/biossíntese , Celulose 1,4-beta-Celobiosidase/metabolismo , AMP Cíclico/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Glucanos/metabolismo , Trichoderma/metabolismo , Western Blotting , Deleção de Genes , Perfilação da Expressão Gênica , Microscopia Confocal , Microscopia de Fluorescência , Trichoderma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...